Elektronenröhren

Die Erfindung der Elektronenröhre

Die Erfindung der Elektronenröhre im Jahr 1883 ging ebenfalls auf Thomas Alva Edison zurück. Er brachte in den Glaskolben einer seiner Glühlampen eine kleine Metallplatte ein, in der Hoffnung, dass sich dadurch die Lampeninnenseite durch die aus dem stromdurchflossenen Kohlefaden austretende Rußpartikel nicht schwärzen würde. Diese „Staubteilchen“ sollten sich, so die Hoffnung Edisons – vielmehr an der Metallplatte anlagern. Dazu verband Edison die Metallplatte von außen mit dem Stromkreis, der den glühenden Faden heizte. Aus Interesse schloss Edison zusätzlich ein Amperemeter an den Draht an.

Tatsächlich zeigte das Amperemeter einen schwachen Strom an, obwohl nur ein Draht mit der Metallplatte verbunden war; der Stromkreis war daher nicht geschlossen. In weiteren Experimenten fand Edison heraus, dass nur dann ein Strom durch das Amperemeter floss, wenn die Metallplatte mit dem positiven Pol der Stromquelle verbunden war – lag eine negative Spannung an der Platte an, so floss kein Strom. Edison bezeichnete die positiv geladene Metallplatte später als Anode.

Ohne es zu ahnen, hatte Edison damit die erste Röhrendiode entwickelt.

Elektronenröhren-Dioden

Eine Röhrendiode (di = griech. zwei) besteht aus einem vakuumierten Glaskolben, in den zwei metallische Elektroden – eine Kathode und eine Anode – eingebaut sind.

fig-schaltzeichen-röhrendiode

Schaltzeichen einer Röhrendiode.

Die Kathode \mathrm{K} besteht aus einem sehr dünnen Draht, der sich bei anliegender Spannung aufgrund seines elektrischen Widerstands in kurzer Zeit bis zur Weißglut erhitzt. Aufgrund der hohen thermischen Energie verlassen dabei auch Elektronen den Draht und umgeben ihn in Form einer winzigen „Ladungswolke“. Beim Herauslösen der Elektronen bleiben in der Kathode positiv geladene Atomrümpfe zurück. Diese üben eine elektrische Anziehungskraft auf die ausgetretenen Elektronen aus, so dass sich ein Gleichgewicht zwischen der thermischen Bewegung und der elektrischen Anziehung einstellt.

Die Anode \mathrm{A} besteht, wie in Edisons Versuch, aus einer kleinen Metallplatte. Wird an dieser eine genügend große positive Spannung angelegt, so lassen sich Elektronen von der Kathode zur Anode hin „absaugen“. Damit ergibt sich folgender Stromkreis: Ausgehend vom Minuspol der Stromquelle treten die Elektronen an der glühenden Kathode aus, strömen durch das Vakuum und fließen über die Anode zum Pluspol Stromquelle zurück.

Bei einer Umpolung der anliegenden Spannung tritt in der Elektronenröhre kein Stromfluss auf. Aufgrund dieser Eigenschaft, elektrischen Strom nur in eine Richtung fließen zu lassen, wurden Röhrendioden eine Zeit lang als Gleichrichter eingesetzt. Inzwischen wurden sie weitestgehend durch Halbleiter-Dioden ersetzt, da diese bei gleicher Funktionalität kleiner und kostengünstiger hergestellt werden können und zugleich weniger elektrische Energie benötigen.

Elektronenröhren-Trioden

Eine Röhrentriode (tri = griech. drei) ist prinzipiell wie eine Röhrendiode aufgebaut, mit dem Unterschied, dass sich zwischen Kathode und Anode ein metallischer Draht in Zickzack-Form („Gitter“) als dritte Elektrode befindet.

fig-schaltzeichen-röhrentriode

Schaltzeichen einer Röhrentriode.

Über die am Gitter \mathrm{G} anliegende Spannung ist es auf einfache Weise möglich, die Stärke des durch die Elektronenröhre fließenden Stromes zu bestimmen:

  • Liegt keine Spannung am Gitter an, so können die Elektronen es (nahezu) ungehindert durchdringen. Der Strom in der Elektronenröhre entspricht in diesem Fall dem einer Röhrendiode (ohne Gitter).
  • Liegt eine negative Spannung am Gitter an, so wirkt es auf die von der Kathode kommenden Elektronen abstoßend – es gelangen somit nur weniger Elektronen zur Anode. Der Strom in der Elektronenröhre wird abgeschwächt.

Bereits mit einer schwachen Gitterspannung kann somit schnell und präzise der eigentliche Elektronenstrom in der Röhrentriode geregelt werden. Diese elektronische Steuerung ist sogar so schnell, dass auch rasch wechselnde Spannungen wie Antennensignale (einige MHz!) auf den eigentlichen Elektronenstrom in der Röhre „abgebildet“ und aus diesem wieder „herausgelesen“ werden können.[1]

Die Signal verstärkende Wirkung von Röhrentrioden bildete die Grundlage für die Rundfunk- und Fernseh-Technik des 20. Jahrhunderts. Inzwischen wurden sie insbesondere aufgrund des vergleichsweise hohen Platzbedarfs und der hohen Herstellungskosten bis auf wenige Spezialfälle durch Transistoren ersetzt.


Anmerkungen:

[1]Die Projektion des Steuersignals auf den durch die Röhre fließenden Strom erzeugt ein „Negativ“ des eigentlichen Signals: Ist das Antennensignal stark, so wird der Stromfluss in der Triode minimal und umgekehrt. Um ein verstärktes Signal zu erhalten, das mit dem Ausgangssignal identisch ist, wird der Prozess zweimal durchlaufen, d.h. die auf die Anode der ersten Röhrentriode gelangenden Elektronen werden zum Gitter der zweiten Triode weitergeleitet und dienen dort als Reglersignal.